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1. Introduction and summary

Following [1 – 4], considerable effort has been devoted to understanding what string theory

might have to say about the physics of hard probes in heavy-ion collisions. The key

question is how quickly a hard parton loses energy as it passes through the quark-gluon

plasma (QGP). The approach of [1] (see also [5]) is tied to the BDMPS jet-quenching

formalism [6 – 8] (see also [9, 10], and [11] for a recent review), with a definition of q̂ in

terms of a partially lightlike Wilson loop. The approaches of [2 – 4] are limited to heavy

quarks and focus on drag and stochastic forces. Here we would like to propose an extension

of the approach of [2, 4] to accommodate gluons in N = 4 super-Yang-Mills theory (SYM).

An energetic, off-shell gluon in the thermal medium should be represented as a doubled

string coming up out of the horizon of the AdS5-Schwarzschild geometry. Such a string

must eventually fall back into the horizon. So the question is how far the string gets before

it does so. We will estimate the maximum penetration length ∆x, as a function of the

initial energy E, which is assumed to be much greater than the temperature. If we define

x̂ = πTx Ê =
1

√

g2
YMN

E

T
, (1.1)
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where T is the temperature and g2
YMN is the ’t Hooft coupling of SYM, then the relation

we find, for sufficiently large Ê, is

∆x̂ ≈ 0.95Ê1/3 . (1.2)

This relation is obtained from averaging the leading behavior of the analytic estimates (5.9)

and (6.3). The scaling ∆x ∝ E1/3 is different from the BDMPS scaling ∆x ∝ E1/2, but not

very different. In order to compare with BDMPS, we make a rough operational definition

of q̂ in terms of the stopping length ∆x of a gluon of energy E:

q̂rough ≡ 4E

3αs(∆x)2
. (1.3)

Comparing with BDMPS energy loss is hazardous because the underlying physical picture

is significantly different. Nevertheless, we plug our estimates of ∆x into (1.3) to obtain

estimates for the corresponding value of q̂. To extract numerical values, we consider QCD

at a temperature of 280MeV, which is representative of central gold-gold collisions at√
sNN = 200GeV. We exhibit our estimates in figures 6 and 7. These figures differ only

in how we compare N = 4 SYM to QCD: in the nomenclature of [12], figure 6 uses the

“obvious” scheme and yields q̂ ≈ 92GeV2/ fm in the range E = 5 − 25GeV for the gluon;

and figure 7 uses the “alternative” scheme and yields q̂ ≈ 21GeV2/ fm in the same energy

range. For reasons explained in [12], we prefer the alternative scheme, where comparisons

are made at fixed energy density and the coupling is chosen to make the quark-anti-quark

potential in N = 4 SYM agree as well as it can with lattice results for QCD at separations

on the order of 0.25 fm. In any case, it seems clear that energy loss and thermalization

as estimated from our falling string picture is more rapid than in the BDMPS formalism

with q̂ taken either from perturbative estimates or from [1]. On the other hand, according

to [13], comparison of parton quenching model calculations [14, 15] to PHENIX data leads

to the following 3σ range for the averaged value 〈q̂〉:

7
GeV2

fm
. 〈q̂〉 . 28

GeV2

fm
, (1.4)

with lowest χ2 at 〈q̂〉 ≈ 13GeV2/ fm. It is pleasant that our estimate of q̂ using the “alter-

native” scheme falls well inside the experimentally favored range (1.4). However, we empha-

size that there are significant caveats to this comparison, to be discussed further in section 7.

The idea that an off-shell gluon in a thermal medium should be represented as we

have suggested has several antecedents, including [16, 17].1 In [16] it was argued that in

computing Wilson loops at finite temperature, the configuration of two anti-parallel strings

rising from the horizon to the boundary, and representing a widely separated quark-anti-

quark pair, receives a color factor of N2 because of the two string endpoints on the horizon.2

1Strings falling into anti-de Sitter space have been considered in other contexts related to heavy-ion

physics in [2, 18, 19].
2When the strings are separated, they only interact by virtual exchange of closed string states, and such

exchanges are suppressed by powers of N . The main point of the counting powers of N in [16] was that the

N2 from the horizon cancels against a 1/N2 suppression of this type in order to produce a final amplitude

which is parametrically comparable to the one coming from a string that joins the two quarks without

passing into the horizon.
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This makes sense because the N D3-branes are in some sense “behind” the horizon, and a

string ending on one of N D3-branes indeed acquires a fundamental or anti-fundamental

charge. We had been in the habit of thinking of color charges living on the boundary of

AdS5-Schwarzschild, but it seems more faithful to the D-brane origin of a near-extremal

black 3-brane for the color factor to come from ends at the horizon. Seen in this light, the

trailing string of [2, 4] derives its fundamental color charge from the fact that it actually

passes through the horizon. (See [20] for a particularly clear exposition of the geometry of

the trailing string.) What could be more natural, then, than to turn the heavy quark into

an energetic gluon by letting the string double over on itself and pass back down into the

horizon, rather than rising all the way up to the conformal boundary?

The work of [17] employs a zero-temperature limit of approximately this construction

to consider collisions of gluons. In pure AdS5, however, one can insist upon the view

that color degrees of freedom “live” on the boundary: upon conformal compactification

to global AdS5, the endpoints of the strings are seen to rise back up to the boundary at

a point which is infinitely far from the collision region. In [21], some results of [17] were

extended to finite temperature. Whereas in [17, 21] the focus was on scattering amplitudes

of several hard gluons, here we are interested in the propagation of a single hard gluon

through the thermal medium.

The organization of the rest of this paper is as follows. In section 2 we explain how

to calculate the energy of a gluon represented as a doubled string rising vertically up from

the horizon. Section 3 shows how to carry out an analogous computation when the shape

of the string is part of the trailing string. Section 4 detours into the computation of

lightlike geodesics in the AdS5-Schwarzschild geometry. Section 5 presents estimates of ∆x̂

as a function of Ê using the lightlike geodesics discussed in section 4. Section 6 presents

estimates of ∆x̂ as a function of Ê using lightlike geodesics on the worldsheet of the trailing

string. Section 7 describes comparisons with the BDMPS energy-loss formalism, expanding

on the brief discussion above. Section 8 describes a lightlike limit of the falling string which

is analytically tractable. We end in section 9 with some discussion of possible extensions

of the falling string picture.

2. Estimating the energy of a doubled string

If we accept that an off-shell gluon traveling through a thermal medium should be

represented as a string with both its endpoints passing through the horizon of AdS5-

Schwarzschild, the next question is what the shape of the string should be. A natural

first guess is that it should be straight up and down. The problem is that a string that

is straight up and down at t = 0 will not hold its shape as it moves in the positive x1

direction. This is illustrated in figure 1. To demonstrate that the string can’t stay vertical,

recall first the AdS5-Schwarzschild metric:

ds2 = Gµνdxµdxν =
L2

z2

(

−hdt2 + d~x2 +
dz2

h

)

where h = 1 − z4

z4
H

, (2.1)
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y=yUV

Figure 1: If a string starts at t = 0 in a straight up-and-down configuration, it doesn’t hold its

shape as time evolves forward. At a later time, indicated as t = 1 in the figure, one must solve

difficult classical equations of motion to find the shape of the string. But because of the infinite

redshift characteristic of black hole horizons, the point where the string comes out of the horizon

cannot move at all. At times t > 1, the string continues to fall down toward the horizon. Although

it takes an infinite time to fall all the way in, it only propagates a finite distance ∆x forward.

and the Nambu-Goto action:

SNG = − 1

2πα′

∫

d2σ
√−g where gαβ = Gµν∂αXµ∂βXν . (2.2)

Our convention is to use indices α, β for the string worldsheet coordinates σα, and capital

Xµ = Xµ(σα) for the embedding coordinates of the classical solution under consideration.

The worldsheet current of spacetime stress-energy is

Pα
µ = − 1

2πα′ g
αβGµν∂βXµ , (2.3)

and the equations of motion following from (2.2) are ∇αPα
µ = 0. Here ∇α is the covariant

derivative with respect to the worldsheet metric gαβ. Five-dimensional indices like µ are

treated as scalars with respect to ∇α. Suppose we start the string in a straight up-and-

down configuration at time t = 0, as illustrated in figure 1, with an initial velocity profile

v = v(z) in the x1 direction. Using coordinates σα = (t, z), this means that, at t = 0,

dXµ

dσα
=















1 0

v 0

0 0

0 0

0 1















gαβ =
L2

z2

(

−h + v2 0

0 1/h

)

Pα
µ =

1

2πα′

(

− h
h−v2

v
h−v2 0 0 0

0 0 0 0 1

)

(2.4)

Already from (2.4) we can see that there is a depth-dependent limit on the velocity: v <
√

h

in order for the metric to have Lorentzian signature. Variants of this speed limit have been

discussed in a number of papers, including [2, 22 – 26]. It implies that the string indeed
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cannot stay upright: it would do so only if v is constant in z, and the only way that can be

true is if v = 0. To put it another way, the point where the string comes out of the horizon

cannot move in the x1 direction. All the string can do is to fall over into the horizon.

Assuming the speed limit v <
√

h is satisfied everywhere along the string, the total

momentum of the string can be computed as

pµ =

∫

dz
√−gP t

µ =
L2

2πα′

∫

dz

z2

√

h

h − v2

(

−1 v
h 0 0 0

)

. (2.5)

The first four components pm of pµ can be identified with the four-momentum of the

boundary gauge theory. This is because they are momenta defined in reference to Killing

vectors ∂/∂xm for m = 0, 1, 2, 3. (We use mostly minus signature, so the energy is −p0 > 0.)

The fifth component pz does not have such a simple interpretation. The integral in (2.5)

should be taken over the intersection of the string worldsheet with the hypersurface t = 0.

More specifically, it should be taken over that part of the string worldsheet that is outside

the horizon. Because this part is doubled over and rises to a minimum depth zUV, we find

pµ =
L2

πα′

∫ zH

zUV

dz

z2

√

h

h − v2

(

−1 v
h 0 0 0

)

. (2.6)

There are two subtleties that affect (2.6):

• The kink at z = zUV can support a finite lightlike momentum δpµ, which would have

to be added to pµ. Light-like means Gµνδpµδpν = 0, which is to say h(δp0)
2 = (δp1)

2

if δpµ = 0 for µ > 1.

• One could choose to run the integral over the part of the worldsheet behind the

horizon. Not doing so is a physical choice, motivated by the fact that nothing behind

the horizon can classically influence what’s outside. We regard whatever the string

does behind the horizon as part of the dynamics of the thermal medium.

The result (2.6) is analogous to the expressions E = mγ and p = mvγ for a massive

particle. It shows that there are qualitatively different ways in which to make the string

representing the gluon highly energetic: one may either take zUV → 0, or make the local

“Lorentz” factor 1/
√

h − v2 big over some portion of the string worldsheet.

It has recently been emphasized in [27] that a quasi-particle description of the QGP

may not be valid. A quasi-particle picture is even less likely to capture the physics of

strongly coupled N = 4 super-Yang-Mills, where the weakly coupled degrees of freedom

are manifest only in the dual gravitational description. On the other hand, as long as a

gluon has energy and momentum much greater than the temperature, it scarcely notices the

thermal bath, and there should be an approximately unique way to describe it. The small

z region of AdS5-Schwarzschild is where the presence of the horizon doesn’t matter, and

it is associated with UV physics because an object there translates into a tightly localized

or highly energetic configuration in gauge theory. So we recover the intuition that a hard

gluon can be defined with little ambiguity by assuming that most of its momentum comes
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from the small z region:

pµ = pUV
µ + (infrared effects) where pUV

µ =
L2

πα′
1√

1 − v2

1

zUV

(

−1 v 0 0 0
)

. (2.7)

The expression pUV
µ comes from setting h = 1 and zH = ∞ in (2.6) before carrying out the

z integration: that is, we ignore the bath altogether. Depending on the context, a better

approximation may be needed: for instance, one might want to replace 1− v2 by hUV − v2

so that the limit on v previously discussed is correctly implemented for finite but small zUV.

The result (2.7) also focuses attention on the fact that the string describes an off-shell

object:

Q2 ≡ −(pUV
m )2 =

(

L2

πα′zUV

)2

> 0 . (2.8)

Recall that we use mostly plus signature: thus with the explicit sign included in (2.8),

Q2 > 0 means timelike momentum. We do not know how to represent a gluon with Q2 < 0.

The limit v → 1 from below with p0 held fixed corresponds to taking the gluon on-shell.

But this limit is not available for T > 0, because eventually it would force zUV to become

greater than zH , and ignoring the bath would then be wrong. This discussion highlights

a crucial difference between our approach and the more conventional BDMPS treatment,

where the first step is to make an eikonal approximation where the gluon travels strictly at

the speed of light. While such an approximation is reasonable in perturbation theory and

makes sense for sufficiently energetic probes of a finite-sized medium in an asymptotically

free theory like QCD, we harbor some doubts about the consistency of expanding around

light-like trajectories of charged particles in theories such as N = 4 super-Yang-Mills

where the coupling is finite even in the ultraviolet. In any case, a particle which propagates

only a finite distance through the medium is not on-shell because it is not an asymptotic

state. Thus we are more reassured than concerned over being forced to take v < 1.

3. Energetic gluons and the trailing string

With an approximate expression (2.7) in hand for the momentum pµ of a hard gluon rep-

resented by a doubled string, the next thing we should ask is how far in the x1 direction

the doubled string travels before it falls into the black hole. Falling into the black hole

corresponds to thermalization in the dual gauge theory. So if the string travels a distance

∆x before falling in completely, we expect that ∆x should be identified, at least approxi-

mately, as the stopping distance of the hard gluon in the medium. Both the energy, −p0,

and the penetration length, ∆x, are functions of v and zUV, so the question of maximum

penetration length can be phrased as maximizing ∆x with −p0 held fixed. This extrem-

ization problem is challenging because evaluating ∆x involves solving the non-linear (but

classical) equations of motion for the string, starting from an initial state which is only

approximately specified. Instead of tackling this problem head-on, let’s go back to the ob-

servation that the straight up-and-down string configuration considered in section 2 doesn’t

hold its shape for t > 0. Is there some other string configuration which does? The trailing

– 6 –
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x∆

AdS−Schwarzschild
5

horizon

R
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y=y

spacetime
geodesic

t=1 POND

v

y

x1

t=0

Σ

Figure 2: A string starts at t = 0 in the shape of a falling string that extends up to a finite

minimum depth, y = yUV. (Recall that y = z/zH .) If the string extended up to the boundary,

as shown with a dashed curve, its endpoint would move at a speed v. The lightly shaded region,

below the trajectory labeled POND, retains the shape of the trailing string. At times t > 0 (for

instance at the time denoted t = 1 in the figure), the string probably projects somewhat beyond the

POND trajectory into the narrow region between it and the null spacetime geodesic. The POND

trajectory and the spacetime geodesic are mutually tangent at the point t = 0, y = yUV.

string of [2, 4] suggests itself immediately: it is a steady state solution of a string whose

endpoint on the conformal boundary is required to move with a definite velocity v. That

shape is specified in the gauge σα = (t, z) by the embedding

X1 = v [t + ξ(z)] where ξ(z) = −zH

4i

(

log
1 − iy

1 + iy
+ i log

1 + y

1 − y

)

. (3.1)

Here we have introduced a rescaled depth coordinate

y =
z

zH
. (3.2)

We will persist in using worldsheet coordinates σα = (t, z), but we express results, such as

the right hand side of (3.1), in terms of y when convenient.

Studies in [2] (see also [28]) show that the trailing string is stable against small pertur-

bations. As an alternative initial condition to the straight up-and-down string discussed

previously, let’s therefore consider a string which starts at t = 0 in the shape (3.1), except

that it rises to a finite minimum depth zUV before doubling back over itself and going back

down into the horizon. See figure 2. What we will find is that although this string doesn’t

hold its shape exactly, it “almost” does, in a sense we will describe in section 6, when its

momentum is large.

The worldsheet current of spacetime energy-momentum on the trailing string is com-

– 7 –



J
H
E
P
1
0
(
2
0
0
8
)
0
5
2

puted as follows:

dXµ

dσα
=















1 0

v −vy2/h

0 0

0 0

0 1















gαβ =
L2

z2
Hy2

(

−h + v2 −v2y2/h

−v2y2/h (h + v2 − hv2)/h2

)

Pα
µ =

1

2πα′h(1 − v2)

(

−h − v2 + hv2 v 0 0 v2y2

h

−hv2y2 hvy2 0 0 −h + v2

)

. (3.3)

The total momentum of the doubled string may be computed at t = 0 in a fashion analogous

to (2.5)–(2.6):

pµ =

∫

dz
√−gP t

µ =
L2

πα′zH

1√
1 − v2

∫ 1

yUV

dy

hy2

(

−h − v2 + hv2 v 0 0 v2y2

h

)

. (3.4)

It is important in (3.4) that we stipulated that t = 0, because for t > 0 the string will not

hold its shape precisely: more on this later.

The four-dimensional components pm of the momentum have a logarithmic divergence

at y = 1. (The last component, p5, diverges as a power, 1/(1− y).) In the original context

of a heavy quark propagating through the thermal medium [2], this infrared divergence

owes to the fact that the trailing string is the shape attained in a late-time limit, and

it accounts for the large amount of energy that has already been transferred (or mostly

transferred) from the quark to the thermal bath.3 In the current context, the divergence

should be regulated somehow, because we have in mind creating a gluon with large but

finite energy at t = 0 and then asking how far it propagates. The simplest regulator is

simply to cut off the integral in (3.4) at some yIR slightly less than 1.

Instead of measuring the energy and momentum of the string at t = 0, one can obtain

a divergence-free definition of pm by calculating the amount of energy and momentum in

the string that makes it past a fixed value of x1. More precisely, we should compute the

flux of worldsheet energy-momentum Pα
µ through the intersection of the string worldsheet

with the hypersurface x1 = constant. To prepare for this computation, consider a general

conserved worldsheet current Qα. Its flux through a curve Σ on the worldsheet, specified

by σα = σα(η), is

Q =

∫

Σ
dη

√−g ǫαβQα dσβ

dη
, (3.5)

where ǫαβ is the antisymmetric tensor normalized so that ǫ12 = 1. Now let Σ be the curve

at x1 = 0 on the trailing string, as shown in figure 2. Using η = z as a parameter for this

3The infrared divergence provides an extreme example of how various shapes of the string describe

various states of the gluon and the bath. The infrared tail of the trailing string encodes the interaction of

the gluon with the medium in such a way as to form a sonic boom plus a diffusion wake.
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curve, and replacing Qα by Pα
µ in (3.5), one obtains

pfixed x1

µ =

∫ zH

zUV

dz
√−g

[

P t
µ −

(

∂t

∂z

)

x1

P z
µ

]

=
L2

πα′zH

1√
1 − v2

∫ 1

yUV

dy

y2

(

−1 v 0 0 y2

h

)

, (3.6)

where in the second expression the derivative
(

∂t
∂z

)

x1 is taken at constant x1. Unlike

in (3.4), the integrals defining the four-dimensional components pfixed x1

m are convergent, so

they don’t require an IR cutoff.

We are reassured to observe that for yUV ≪ 1, we recover the form (2.7) from both (3.4)

and (3.6). We will ignore the possibility of an additional lightlike contribution to pµ from

the tip of the string, where it doubles over.

4. Lightlike geodesics in AdS5-Schwarzschild

The tip of an open string, or a doubled string, must move at the speed of light. But it

usually does not follow a lightlike geodesic, because it is being pulled in some direction by

the rest of the string. In the case under consideration, the pull is downward (in the positive

z direction) and backward (in the negative x1 direction). So to find an upper bound on how

far the string gets in the positive x1 direction before falling through the horizon, we could

consider the trajectory of a lightlike particle that starts at the tip of the string at t = 0 and

falls into the horizon without experiencing the pull of the string. To this end, let’s work out

free particle trajectories in the AdS5-Schwarzschild geometry. Parameterizing the particle’s

worldline Xµ = Xµ(η) with an arbitrary variable η, the action may be expressed as

S =
1

2

∫

dη

[

1

e
Gµν

dXµ

dη

dXν

dη
− m2e

]

. (4.1)

Here m is the mass (eventually to be taken to 0) and e is a Lagrange multiplier. For

m 6= 0, one may use the constraint equation for e to eliminate e from the action. After

doing so, the action (4.1) reduces to the standard one,

S = −
∫

ds m . (4.2)

An advantage of (4.1) is that its m → 0 limit correctly describes the dynamics of massless

particles.

Let’s work in a gauge where η = z and consider trajectories of the form

X0 = X0(z) X1 = X1(z) X2 = X3 = 0 . (4.3)

Then

S =

∫

dzL where L =
L2

2ez2

(

−h(X0′)2 + (X1′)2 +
1

h

)

− 1

2
m2e , (4.4)

– 9 –



J
H
E
P
1
0
(
2
0
0
8
)
0
5
2

where primes indicate d/dz. One may immediately form conserved momenta

p0 ≡ ∂L
∂X0′ = − L2

ez2
hX0′ p1 ≡ ∂L

∂X1′ =
L2

ez2
X1′ . (4.5)

The equation of motion for e is an algebraic constraint:

e = ±L2

z2

1
√

p2
0 − hp2

1 − hm2L2/z2
. (4.6)

In order to make energy positive, p0 should be negative, so we should choose the plus sign

in (4.6) for trajectories (or segments of trajectories) where z increases as t increases, and

the minus sign for trajectories where z decreases as t increases. Hereafter we will always

choose the plus sign, corresponding to particles falling down toward the horizon.

The particle trajectories Xµ = Xµ(z) can be determined using (4.5)–(4.6) once one

specifies p0 and p1. In the massless limit, the shape of the orbits X1 = X1(z) is determined

from

dX1

dz
= X1′ =

ez2

L2
p1 = − p1/p0

√

1 − hp2
1/p

2
0

. (4.7)

To perform the integral in (4.7) one needs elliptic functions, and the explicit result is not

very enlightening. But for p1 = −p0, the result is very simple:

X1

zH
= K − zH

z
= K − 1

y
, (4.8)

where K is a constant of integration. One may also straightforwardly show that

X0 = X1 − ξ(z) , (4.9)

where ξ(z) is as defined in (3.1). We will refer to (4.8) as the critical orbit, because for

p1 < −p0 the orbits intersect both the conformal boundary and the horizon, while for

p1 > −p0 the orbits begin and end at the horizon: see figure 3. In all cases, getting to or

from the horizon takes an infinite amount of coordinate time X0.

5. Estimating the penetration depth using spacetime geodesics

To find an approximate upper bound on the penetration depth, we should start a massless

particle at the tip of the string with a physically motivated choice of pµ. But how

should we make this choice? To answer this question, let’s have a look at the geometry

of the trailing string in the hyperplane x2 = x3 = 0. Because the intrinsic geometry

is Lorentzian, there is a basis of lightlike vectors, ℓα and kα, on the worldsheet: using

coordinates σα = (t, z) as before,

ℓα =

(−v2
√

1−h+h
√

1−v2

h(h−v2)

1

)

kα =





1

−h(h−v2)

v2
√

1−h+h
√

1−v2



 . (5.1)
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Figure 3: Typical orbits for a massless particle in AdS5-Schwarzschild, all leading into the horizon

(the dashed black line) at x1 = 0. An open orbit is shown in red; the critical orbit is shown in

green; and a closed orbit is shown in blue.

All components of ℓα and kα are non-singular functions of z, and all are positive except

for kz, which is positive only when h < v2, meaning below the worldsheet horizon at

z = zH
4
√

1 − v2. One may correspondingly form spacetime vectors ℓµ = ℓα∂Xµ/∂σα and

kµ = kα∂Xµ/∂σα. To complete a basis for the x2 = x3 = 0 hyperplane one may add the

vector nµ normal to the worldsheet: it is defined up to an overall factor by the equations

nµ∂Xµ/∂σα = 0, or equivalently nµℓµ = nµkµ = 0, and one easily finds

nµ =
(

−v 1 0 0 v
√

1−h
h

)

. (5.2)

The vector ℓµ points in the direction of a lightlike signal traveling down the string.

A sensible initial condition for the massless particle whose trajectory is supposed to

approximately bound the motion of the string worldsheet is pµ ∝ ℓµ. Combining this

initial condition with (4.7), we can immediately calculate how far the massless particle

gets in the positive x1 direction before falling into the horizon:

∆xspacetime = −zH

∫ 1

yUV

dy
p1/p0

√

1 − (1 − y4)p2
1/p

2
0

where

p1

p0
= v

√
1 − v2 − y2

UV

v2y2
UV − (1 − y4

UV)
√

1 − v2
. (5.3)

As remarked previously, the integral can be done in terms of elliptic functions, but the

explicit form is unenlightening. The subscript “spacetime” in (5.3) reminds us that the

calculation hinges on lightlike geodesics in the AdS5-Schwarzschild spacetime.

The extremization problem that we set out to solve was to maximize the distance ∆x

traveled by a classical string with fixed energy E = −p0, starting from an initial configura-

tion with both ends passing through the horizon. What we can now do instead is to maxi-

mize ∆xspacetime subject to fixed energy. We will consider three ways of defining the energy:

EUV =
L2

πα′zH

1√
1 − v2

1

yUV
, (5.4)
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which comes from (2.7);

Etrailing =
L2

πα′zH

1√
1 − v2

∫ yIR

yUV

dy

hy2
(h + v2 − hv2) , (5.5)

which comes from (3.4); and

Efixed x1 =
L2

πα′zH

1√
1 − v2

(

1

yUV
− 1

)

, (5.6)

which comes from (3.6). Evidently, the dimensionful parameters L, α′, and zH enter into

these expressions only as multiplicative prefactors. So it is convenient to scale them out

as in (1.1) by defining

x̂1 =
x1

zH
= πTx Ê =

πα′zH

L2
E =

1
√

g2
YMN

E

T
, (5.7)

where we have used the standard relations

zH =
1

πT

L2

α′ = g2
YMN (5.8)

for N = 4 super-Yang-Mills theory. The dimensionless quantities ∆x̂spacetime, ÊUV, and

Êfixed x1 are functions only of v and yUV, and Êtrailing is a function only of v, yUV, and

yIR. Let’s regard yIR as a fixed cutoff. Then the extremization of ∆x̂spacetime with either

ÊUV, Êtrailing, or Êfixed x1 held equal to some fixed value Ê is a well-defined problem, and

we shall denote the result ∆x̂A(Ê). The index A labels the assumptions that went into

the calculation. For example, if we held ÊUV fixed in an extremization of ∆x̂spacetime, then

we would say A = {spacetime,UV}. If instead we held Êtrailing fixed, say with yIR = 0.9,

then we would say A = {spacetime, trailing, yIR = 0.9}. In figure 4 we show a number of

evaluations of ∆x̂A(Ê) for several different choices of assumptions.

As can be seen from figure 4, the functional dependence ∆x̂A(Ê) is similar for the vari-

ous sets A of assumptions. To better understand this functional dependence, we computed

a series expansion at large Ê for A = {spacetime,fixed x1}:

∆x̂spacetime,fixed x1 = 1.0185Ê1/3 − 0.8180 + 0.052Ê−1/3 + 0.017Ê−2/3 + O(Ê−1) . (5.9)

As shown in figure 4, this expression provides a fairly good approximation to the numerical

evaluations. We defer the explanation of how we derived (5.9) until the end of section 6,

where the same method will be described in a slightly simpler setting.

To illustrate more explicitly the nature of the extremization problem, in figure 5 we

plot ∆x̂spacetime as a function of γ = 1/
√

1 − v2 at fixed Êfixed x1 . We also plot ∆x̂POND, a

quantity to be explained in section 6. It is worth noting that the maximum in ∆x̂ is fairly

broad in γ, and it gets broader as Ê increases.
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Figure 4: Evaluations of the maximum penetration depth ∆x̂A(Ê) with a variety of assumptions.

The solid blue curve shows the analytic approximation (6.3) to the blue circles, and the solid black

curve shows the analytic approximation (5.9) to the black diamonds.
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Figure 5: The penetration length ∆x̂ as a function of γ for fixed Ê. The blue curves represent the

penetration length for a spacetime geodesic, while the black curves represent the same quantity for

the point of no disturbance (POND), which is explained in section 6. For all curves, the energy was

computed at fixed x1 using (5.6). The red points mark the maxima of each curve and correspond

to data points in figure 4.

6. Estimating the penetration depth using worldsheet geodesics

As we have described, a lightlike geodesic emanating from the tip of the doubled string

provides an approximate upper bound on how far its trajectory reaches forward in the

x1 direction — approximate because the selection of initial direction is a physical choice

based on our expectations of what a typical initial state of the string should be. There
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remains the possibility that the string will always fall into the horizon much more quickly

than the lightlike geodesics do. Ideally we would like to have a lower bound to show that

this does not happen. But recall the nature of the extremization problem: the maximum

penetration depth ∆x̂(Ê) is the furthest that a string can get with specified initial energy.

It’s easy to see how it could get much less far: by taking both v and yUV very small, with

total energy held fixed, one finds configurations that fall almost straight down into the

horizon despite having a large energy. What we really want, then, is a demonstration that

there is some string configuration which gets almost as far as the lightlike geodesics we

have already studied. This turns out to be straightforward, as we will now discuss.

The configuration we want to study is again the doubled trailing string shown in

figure 2. We first mentioned it in connection with the hope that it would almost hold

its shape as it falls into the horizon. Here’s an argument that it does. First imagine the

original trailing string of [2, 4], which continues all the way up to the conformal boundary.

By construction, it holds its shape for all time. Now, at time t = 0, let’s cut the string at

some finite zUV, and let’s keep track only of the lower part of it (i.e. the part with z > zUV).

For some time t slightly greater than 0, most of this lower part of the string must be in the

same shape that it would have been had we not cut the string, simply because it hasn’t

“figured out” that the cut occurred. More precisely, if a lightlike signal hasn’t had time to

propagate down the string below a certain depth z∗, then the part of the string with z > z∗
must be in the same configuration that it would have been had we not cut the string. The

motion of the part of the trailing string which the lightlike signal along the worldsheet is

able to reach could be complicated, and we will not try to figure out what it is, except to

restate that it should be bounded by the lightlike spacetime geodesic studied in section 5.

A lightlike geodesic on the string worldsheet, not in bulk spacetime, is relevant for finding

out which parts of the trailing string remain undeformed at a given time t > 0 because

particles like gravitons traveling on lightlike spacetime geodesics can affect the string only

through string interactions, which are suppressed by 1/N .

We already calculated the tangent vectors to lightlike geodesics in (5.1). The relevant

one is ℓα because it goes down the string worldsheet (or goes down “faster” in the region

where h < v2). The differential equation dt/dz = ℓt is readily integrated, and it gives

t

zH
=

1

4
log

1 + y

1 − y
+

i

4
log

1 + iy

1 − iy
− i

√
γ

2
log

1 + iy
√

γ

1 − iy
√

γ
, (6.1)

where γ = 1/
√

1 − v2 as usual. Plugging (6.1) into (3.1), one finds the spacetime orbit

x1 = x1(z) of the point below which the trailing string must be undisturbed:

x̂1
POND =

x1

zH
=

v

2i

√
γ log

1 + iy
√

γ

1 − iy
√

γ
. (6.2)

POND stands for point of no disturbance. ∆x̂POND is the difference between x̂1
POND when

y = 1 and its initial value when y = yUV.

Whatever the string may do above the point of no disturbance, ∆x̂POND sets a lower

bound on how far it gets in the x1 direction. As is evident from figure 5, ∆x̂POND is

almost as big as ∆x̂spacetime for v close to 1. And because ∆x̂POND is a function of v and
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yUV, it can be passed through the same maximization procedure as described at the end of

section 5 to give estimates ∆x̂A(Ê) of the maximum penetration depth, where A includes

“POND.” A caveat is that ∆x̂POND involves an evaluation of the point of no disturbance

in the limit y → 1, where it crosses the horizon; but the estimate Etrailing of the energy of

the string requires an infrared cutoff at some finite value yIR < 1. Evidently, there is an

inconsistency in whether or not we include in the calculations the part of the trailing string

closer to the horizon than yIR. This caveat can be avoided by using the fixed x1 strategy

for evaluating the initial energy. But to check that it is unlikely to influence our qualitative

conclusions when we use an infrared regulator to calculate the energy, we considered an

alternative definition of ∆x̂POND which is the difference of x̂1
POND evaluated at yIR and

yUV rather than at 1 and yUV. This is indicated by including “cutoff” in A.

Figure 4 includes numerical evaluations of ∆x̂A for two different sets of assumptions

including POND. We again see that the functional dependence ∆x̂A(Ê) is roughly the same

for the different assumption sets. For A = {POND,fixed x1}, analytic approximations at

large Ê give

∆x̂POND,fixed x1 =0.8798Ê1/3 − 0.8252 + 0.058Ê−1/3 + 0.582Ê−2/3 − 1.601Ê−1

+ 2.25Ê−4/3 − 1.16Ê−5/3 − 2.11Ê−2 + O(Ê−7/3) (6.3)

To derive (6.3), the first step is to write the relevant energy estimate, (5.6), as

Ê = γ

(

1

yUV
− 1

)

. (6.4)

Consider now the combination

λ ≡ γy2
UV . (6.5)

The relations (6.4) and (6.5) may be inverted to express γ and yUV in terms of Ê and

λ. The next step is to use (6.2) to express ∆x̂POND in terms of Ê and λ. This can be

done in closed form, but the explicit expression is not very illuminating. The maximum

of ∆x̂spacetime is attained at a value λ = λ∗ determined by the equation

(

∂

∂λ
∆xspacetime(Ê, λ)

)

λ=λ∗

= 0 . (6.6)

The asymptotic behavior of λ∗ can be calculated by plugging a large Ê expansion of the

form

λ∗ = λ
(0)
∗ + λ

(1)
∗ Ê−1/3 + λ

(2)
∗ Ê−2/3 + · · · (6.7)

into (6.6) and solving for the coefficients λ
(i)
∗ term by term. For example, setting the

coefficients of the first two terms to zero leads to the equations

−3

√

λ
(0)
∗ +

(

1 + λ
(0)
∗
)

cot−1

√

λ
(0)
∗ = 0

2
(

λ
(0)
∗
)4/3 (

1 + λ
(0)
∗
)

+
(

−2 + λ
(0)
∗
)

λ
(1)
∗ = 0 . (6.8)
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These equations can be solved numerically to give λ
(0)
∗ = 0.212 and λ

(1)
∗ = 0.171. Finally,

plugging the series expansion (6.7) back into our expression for ∆x̂POND(Ê, λ) and

expanding at large Ê, one recovers (6.3).

The method we just described can also be used to obtain the large Ê behavior of

∆x̂spacetime given in (5.9).

7. Comparing to BDMPS estimates of energy loss

A standard way of estimating energy loss by hard partons is the BDMPS jet-quenching

formalism, which is summarized for example in [5, 11]. The energy loss of a hard parton

in a representation R of the color group SU(N) is

∆E =
1

4
αsCRq̂(∆x)2 , (7.1)

where ∆x is the distance traveled.4 CR is the Casimir denoted C2(R) on p. 500ff of [29], so

that CF = (N2 − 1)/2N for a fundamental quark and CA = N for a gluon. A perturbative

estimate gives

q̂pert =
8ζ(3)

π
α2

sN
2T 3 . (7.2)

A rule-of-thumb estimate for the QCD coupling at RHIC energies is αs = 1/2.

A calculation in N = 4 SYM starting from a Wilson loop definition of q̂ yields [1]

q̂LRW =
π3/2Γ(3/4)

Γ(5/4)

√

g2
YMN T 3 . (7.3)

It seems clear that QCD should exhibit a lower value of q̂ because it has fewer degrees

of freedom: about a third as many as measured by the entropy density. One way of

incorporating this factor was proposed in [5]: it is to include a proportionality to the

square root of the entropy in q̂. Thus

q̂scaled LRW ≈
√

47.5

120
q̂LRW ≈ 0.63 q̂LRW . (7.4)

Because q̂scaled still depends on the ’t Hooft coupling g2
YMN , one must fix the value of this

coupling. An obvious way to do so is to insist that tree-level gluon scattering processes

should have the same amplitude in N = 4 gauge theory as in QCD: that is, the tree-level

couplings coincide, resulting in g2
YMN = 6π when αs = 1/2 and N = 3. In quoting a

numerical value for q̂scaled LRW in table 1, we have used the “obvious scheme:” g2
YMN = 6π

and TN=4 = TQCD.

An alternative scheme for comparing N = 4 SYM to QCD was proposed in [12].

Instead of comparing at fixed temperature, one compares at fixed energy density. This

is supposed to correct, approximately, for the larger number of degrees of freedom in

4Some authors prefer to measure distance traveled using a lightcone coordinate, which introduces an

additional factor of 1/2 into (7.1).
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N = 4 theory, and it approximately amounts to setting TN=4 = TQCD/31/4. Thus, in place

of (7.4), one would have

q̂alternative LRW ≈ 1

33/4
q̂LRW . (7.5)

Also, instead of comparing at fixed tree-level coupling, one chooses in the alternative scheme

a value g2
YMN ≈ 5.5 in order to approximately match the force between a heavy quark

and anti-quark separated by a distance on order 0.25 fm in a medium at a temperature

characteristic of RHIC collisions. (Even smaller values of g2
YMN can be motivated by

comparing SYM and QCD at fixed Debye mass [16].) As shown in table 1, q̂alternative LRW,

with g2
YMN = 5.5, is essentially indistinguishable from the perturbative estimate (7.2).

To compare the BDMPS result to the falling string calculations, we use the operational

definition (1.3), which amounts to setting the stopping length of a hard gluon equal to the

value of ∆x that one obtains from (7.1) upon setting ∆E equal to the initial energy of the

gluon (and, of course, CR = 3). We further set αs = 1/2 in (1.3), obtaining

q̂rough =
8E

3(∆x)2
. (7.6)

For x in (7.6), we plug in a value estimated from string theory in one of the ways we have

explained above. Using also (1.1), we find that q̂rough becomes

q̂fall =
8π2

3

√

g2
YMN

Ê

∆x̂(Ê)2
T 3 . (7.7)

We emphatically warn the reader that (7.7) is only a rough estimate of the “effective q̂”

implied by our falling string picture, because the underlying physical picture is significantly

different from the BDMPS formalism. Let us review the differences before proceeding to

extract numbers from (7.7):

1. The “gluon” as described by the falling string is off-shell: it follows a timelike trajec-

tory. This contrasts with the eikonal approximation of lightlike trajectories employed

in the BDMPS treatment.

2. In the zero-temperature calculation of [17], the string worldsheet can be understood

to arise, in the usual sense of ’t Hooft, from a sum over an infinite set of planar

diagrams contributing to a certain exclusive process; similarly, in our treatment,

the strong interactions of the gluon with the medium are encoded in the classical

dynamics of the worldsheet. This again contrasts with BDMPS, which is a partially

perturbative treatment of radiative energy loss to the medium. It is not obvious to

us how to translate some aspects of the falling string calculation to the spectrum of

radiated energy.

3. We have not included fluctuations in our treatment, so we cannot (yet) give an

account of the diffusion of transverse momentum similar to the one that is a prominent

part of the BDMPS formalism.
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Figure 6: Evaluations of q̂ as given in (7.7) under a variety of assumptions, using the obvious

scheme. The solid blue curve corresponds to the LRW prediction (7.3).
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Figure 7: Evaluations of q̂ as given in (7.7) under a variety of assumptions, using the alternative

scheme. The solid blue curve corresponds to the LRW prediction (7.3), the dashed purple curve

corresponds to the “scaled LRW” prediction (7.4), and the dotted yellow curve corresponds to the

“alternative LRW” estimate (7.5).

Either the obvious scheme (TQCD = TN=4 and g2
YMN = 6π) or the alternative

scheme (TQCD = TN=4/3
1/4 and g2

YMN = 5.5) can be applied to (7.7), and we will

denote the resulting expressions q̂obvious fall and q̂alternative fall. In both schemes we take

TQCD = 280MeV, which is a reasonable estimate for central gold-gold collisions at RHIC’s

top energy,
√

sNN = 200GeV. Because x̂ is not exactly proportional to Ê1/2, q̂ in equa-

tion (7.7) depends on Ê. However, this dependence is rather weak, amounting at large

enough Ê to a Ê1/6 behavior. Figures 6 and 7 show that for 5GeV ≤ E ≤ 25GeV, which

we take as a representative range of energies for hard gluons in the QGP produced at

RHIC, q̂ is roughly constant. By fitting x̂ to a square-root dependence on Ê for E in the
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quantity q̂pert q̂LRW q̂scaled LRW q̂alternative LRW q̂alternative fall q̂obvious fall

value @ 280MeV 0.77 3.6 2.3 0.86 21 92

Table 1: Various ways of estimating q̂. See the main text for details on each one. All values for q̂

are quoted in units of GeV2/ fm.

above-mentioned range, and using (7.7), we find

q̂
{POND, fixed x1}
obvious fall = 116

GeV2

fm
q̂
{spacetime, fixed x1}
obvious fall = 68

GeV2

fm

q̂
{POND, fixed x1}
alternative fall = 26

GeV2

fm
q̂
{spacetime, fixed x1}
alternative fall = 16

GeV2

fm
.

(7.8)

We chose the fixed x1 computation of energy, (5.6), because it avoids the use of IR cutoff

and thus incorporates fewer assumptions.

Representative numerical values for the estimates of q̂ discussed here are presented in

table 1. The values of q̂obvious fall and q̂alternative fall that appear in this table are the averages

of the corresponding quantities calculated from POND and spacetime geodesics, as quoted

in (7.8). We again stress that these averages should be regarded as rough estimates.

As remarked around (1.4), a recent comparison of parton quenching models to PHENIX

data favors the range q̂ ≈ 7− 28GeV2/ fm [13]. It is interesting, but in no way conclusive,

that the only estimate of q̂ in table 1 that falls within this range is q̂alternative fall. Of the

estimates based on [1], it is fair to exclude q̂LRW because it is intended to be for N = 4

SYM, without any rescalings that would account for the differences between N = 4 and

QCD. So — with T = 280MeV — both perturbative estimates and those based on [1] come

out below the 3σ range (1.4), and q̂obvious fall comes out above. But the T 3 dependence of

q̂ makes it difficult to pin down the theoretical predictions with much precision.

We are pleased to see a certain consistency emerging between the falling string

calculations of this paper and the computations of heavy quark drag and diffusion

in [2 – 4]: whereas the energy predicted by string theory is too strong when compared in

the obvious scheme, it is close — though perhaps still a bit high — when compared in

the alternative scheme [12]. Other comparison analyses have been proposed in the heavy

quark setup which give pretty good agreement between string predictions and data: see

for example [30], in which perturbative results are compared between N = 4 SYM and

QCD as well as strong coupling results.

The BDMPS approach to energy loss is hardly the only one in common use. Others

include the higher twist, GLV, and AMY formalisms [31 – 34]. Each approach makes a

different set of assumptions. It would be useful to make cross-comparisons with the falling

string. We leave this task for future work.

8. The null string limit

The key to obtaining an estimate for the stopping length ∆x̂(Ê) is that the POND trajec-

tory, which provides an approximate lower bound on ∆x̂, is close to the massless spacetime
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geodesic, which provides an approximate upper bound on ∆x̂: see figure 2. To see why

this happens, consider the limit v → 1 with yUV held fixed. A straightforward calculation

shows that the POND trajectory coincides with the spacetime geodesic in this limit. The

key point is that the worldsheet becomes a null surface in this limit, so the lightlike tan-

gent vector ℓµ to the POND trajectory is also normal to the worldsheet. In fact, in this

limit, ℓµ, kµ, and nµ all coincide up to overall magnitudes. A heuristic way of thinking

about this is that in the v → 1 limit, the string is replaced by an ensemble of massless

particles, all following critical trajectories of the form (4.8) (but with different values of

K). Signals can’t propagate up or down the string in this limit: every “bit” of string is

causally isolated from every other bit, and follows a massless spacetime geodesic. We can

develop this heuristic picture by defining a scaled version of the string’s inverse tension:

α′
scaled ≡ α′

√

1 − v2 , (8.1)

Then, formally, we can take v → 1 and α′ → ∞ in such a way that α′
scaled remains fixed.

We will describe this as the “null string” limit, because the string worldsheet becomes a null

surface. It is a formal limit because when α′ ≫ L2, stringy corrections to supergravity prob-

ably become large, so the AdS5-Schwarzschild background is expected to be significantly al-

tered. But it captures the key idea that the string tension doesn’t matter in the v → 1 limit.

As an application of the null string limit, we can compute the five-dimensional stress

tensor of the falling string for v → 1. We are ignoring stringy corrections, so the action we

start with is

S =
1

2κ2
5

∫

d5x
√
−G

[

R +
12

L2

]

+ SM , (8.2)

where SM is the matter action. The five-dimensional stress tensor τµν can be defined

through the equation

δSM =

∫

d5x
√
−G δGµν

1

2
τµν , (8.3)

so that it enters into the Einstein equation as

Rµν − 1

2
RGµν − 6

L2
Gµν = κ2

5τ
µν . (8.4)

The result will be that the null string’s stress tensor is an integral of the stress tensors for

continuously many massless particles propagating on critical null geodesics.

First, let’s compute the stress tensor of a massless particle, starting from the ac-

tion (4.1) with m = 0. The result is immediate:

τµν
particle =

1√
−G

∫

dη δ5(xµ − Xµ(η))
1

e

dXµ

dη

dXν

dη

=
1√
−G

∫

dη δ5(xµ − Xµ(η))
dXµ

dη
pν

=
1√
−G

δ4(xm − Xm(z))
dXµ

dz
pν , (8.5)
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where pµ = 1
eGµν

dXν

dη is the momentum conjugate to Xµ, and in the last line we have spe-

cialized to the gauge η = z. The quantities p0 and p1 coincide with the expressions in (4.5)

when η = z. Let us now specialize to the critical trajectory (4.8) and set K =
x1

H

zH

+ 1, so

that x1
H is the position at which the geodesic crosses the horizon. Introducing the one-form

bµ =
(

−1 1 0 0
√

1−h
h

)

, (8.6)

which is tangent to the particle’s trajectory, and employing the gauge η = z, it is

straightforward to show that

τµν
particle = τparticle(x

µ;x1
H)bµbν (8.7)

where

τparticle(x
µ;x1

H)=
Ezz2

H

L3
δ

(

t−x1
H−zH +

z2
H

z
+ξ(z)

)

δ

(

x1−x1
H−zH +

z2
H

z

)

δ(x2)δ(x3) . (8.8)

The product of delta functions in (8.8) is simply δ4(xm − Xm(z)), and we set E = −p0.

Next, we can compute the stress tensor of a string with v < 1 starting from the

Nambu-Goto action (2.2). The result is

τµν
string =

1√
−G

∫

d2σ
√−g δ5(xµ − Xµ(σ)) ∂αXµPαν (8.9)

where Pα
µ is given by (2.3). Taking the null string limit, one finds

pα
µ ≡ lim

null

string

√−gPα
µ =

L2

2πα′
scaled

1

z2
Hh

(

− 1√
1−h

1√
1−h

0 0 1
h

−h h 0 0
√

1 − h

)

. (8.10)

Both rows of (8.10) are proportional to bµ as defined in (8.6), so the matrix has rank

1. Observing that bµ coincides, up to an overall factor, with nµ, ℓµ, and kµ in the limit

v → 1, it already seems inevitable that the stress tensor of the null string will reduce to an

ensemble of massless particles. Indeed, by plugging (8.10) into (8.9) one finds

τµν
null

string

≡ lim
null

string

τµν
string =

1√
−G

θ

(

x1
H − x1 + zH − z2

H

z

)

δ(t − x1 + ξ(z))δ(x2)δ(x3)∂αXµpαν

(8.11)

where

θ(x) =

{

0 for x < 0

1 for x > 0 .
(8.12)

The first delta function in (8.11) enforces the defining relation (3.1) of the v → 1 limit of

the trailing string. The theta function factor arises because the boundary of the null string

follows the orbit (4.8) with K =
x1

H

zH
+ 1. Using (8.10) and (3.3),

τµν
null

string

= τstring(x
µ;x1

H)bµbν , (8.13)
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where

τstring(x
µ;x1

H) =
z/L

2πα′
scaled

θ

(

x1
H − x1 + zH − z2

H

z

)

δ(t − x1 + ξ(z))δ(x2)δ(x3) . (8.14)

To see that the stress tensor of the string is identical to the stress tensor of an ensemble of

massless particles following critical trajectories, we need only note that

∂τstring(x
µ;x1

H)

∂x1
H

=
1

2πα′
scaled

L2

Ez2
H

τparticle(x
µ;x1

H) . (8.15)

Turning (8.15) around, τstring is an integral over x1
H of τparticle, and since bµbν has no explicit

dependence on x1
H , the same relation holds between τµν

string and τµν
particle.

A consequence of the discussion of the last few paragraphs is that to compute the

contribution of a falling null string to the expectation 〈Tmn〉 of the gauge-theory’s stress

tensor, one can start by doing the analogous calculation for a massless particle and then

integrate with respect to x1
H . The falling null string is, as we have discussed, only a formal

approximation to the finite-tension falling strings of real physical interest. But since its

shape is known analytically, it seems a worthwhile starting point for an investigation of

〈Tmn〉. We hope to report on calculations along these lines in future work.

So far in this section, we have focused on the limit v → 1 with yUV held fixed. But

in studying the maximum penetration length of high-energy probes, a different limit is

appropriate: for fixed energy, we maximize ∆x by varying v and yUV so as to hold E

fixed. For large Ê, the maximum is attained for γy2
UV = λ∗ ≈ λ

(0)
∗ , where λ

(0)
∗ = 0.154 for

A = {spacetime,fixed x1} and 0.212 for A = {POND,fixed x1}. Thus, the limit of interest

for estimating penetration length of very hard probes is v → 1 with γy2
UV held fixed —

but held fixed to different values for spacetime as compared to POND. In this Ê → ∞, the

maximum ∆xPOND and the maximum ∆xspacetime do not approach one another: instead,

∆xPOND/∆xspacetime → 0.86.

9. Discussion

The trailing string of [2, 4] is essentially an equilibrium configuration, where energy is

lost at a constant rate into the plasma, but the quark never slows down because it is

infinitely massive. A key feature of heavy-ion physics is that many or even most hard

partons travel only a short distance through the medium before substantially stopping. Our

discussion of falling strings is a first attempt to incorporate into the trailing string picture

the dramatically non-equilibrium nature of the physics of energy loss for light partons. It

may help the reader’s intuition to note that in the alternative scheme, x̂ = 2 corresponds to

x ≈ 0.6 fm, and Ê = 20 corresponds to E ≈ 10GeV, when T = 280MeV in the real-world

plasma. So, according to figure 4, a 10GeV gluon stops in a distance of about 0.5 fm.

Finally, we can consider how the falling string picture might generalize to theories

with fundamental quarks whose mass is finite. In the construction of [35], fundamentally

charged quarks come from strings stretched between the D3-branes and D7-branes, where

the D3-branes create the AdS5 (or AdS5-Schwarzschild) geometry, and the D7-branes are
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usually treated in the probe approximation. At finite temperature, the D7-branes either

descend to a minimum distance from the black hole horizon if the mass of the corresponding

quark is sufficiently larger than the temperature, or they extend down into the horizon if

the corresponding quark is light [36]. (In any case, provided temperature is constant, the

D7-branes are static, and apparently stable.) At the risk of oversimplifying, let’s ignore

the geometry of the D7-brane embeddings in ten dimensions and replace them by “flavor-

branes” that fill AdS5-Schwarzschild either down to some maximal depth z∗ < zH , or that

extend across the horizon at z = zH . The finite-mass trailing string as considered in [2] was

assumed to end on a flavor brane at the maximum possible depth, i.e. z = z∗. A curious

property of such strings is that they have a maximum speed, v =
√

1 − z4∗/z
4
H , which we

alluded to following (2.4). This speed gets smaller as the quark mass gets smaller, and

it is in some sense zero for quarks that are light enough so that the corresponding D7-

brane extends into the horizon. It now seems clear that this maximum speed should be

understood as the speed above which a falling string picture of energy loss must be taken

into account. More precisely, an energetic quark can be represented as a string coming out

of the horizon and extending up to a lesser depth, zUV < z∗, than the maximum depth of

the flavor brane (if there is one). Essentially the same analysis we have given for gluons

could be replayed for such strings, with the main difference being that the string is no longer

doubled, but ends on the flavor brane. Admittedly, a fully correct treatment of the D3-

D7 construction would involve non-trivial motion of the string in the full ten-dimensional

geometry, such that the projection to AdS5-Schwarzschild would not have the property that

the string endpoint travels on a null trajectory. However, we are inclined to think that such

a motion, which involves the SO(6) R-symmetry of N = 4 super-Yang-Mills theory, doesn’t

translate very precisely to QCD. It may be that ignoring the ten-dimensional geometry

altogether and employing flavor-branes in place of bona fide string theory constructions

captures approximately the right physics. For light quarks, where there is no maximum

depth, the only change would then be to replace E by E/2: that is, energy loss is half as

fast for fundamentally charged light quarks as for gluons. This is the same scaling as found

in a BDMPS treatment, where according to (7.1) the energy scales linearly with CR, and

CF

CA
=

N2 − 1

2N2
≈ 1

2
, (9.1)

where N = 3 is the number of colors. For heavy quarks, there could be a two-stage process

of energy loss, where one first has ∆E ∝ (∆x)3 due to falling string dynamics, and then,

after the string has fallen as far as it can while still remaining attached to the flavor brane,

one has dE/dx ∝ p, characteristic of trailing string dynamics.

We have assumed throughout that string splitting and string joining interactions are

negligible. In fact they are suppressed by a power of N . In the context of doubled strings,

the string could split anywhere along its length, and the amplitude to do so is proportional

to gstr ∝ g2
YM, which is indeed an O(1/N) effect using ’t Hooft scaling. However, this

suppression may not be enough to make the effect unimportant. The result of one such

splitting is illustrated in figure 8. Physically, the splitting describes a decoupling of most

of the hard parton’s momentum from its color — a sort of dual hadronization in the fifth
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Figure 8: A doubled falling string which experiences a splitting interaction at a time between

t = 0 and t = 1. This interaction is suppressed by one power of N .

dimension, where the closed string that carries most of the momentum is a color-singlet

glueball in the process of thermalizing. If splitting is significant, it might help the string get

a little further in the x1 direction, but no further than the spacetime geodesic considered

in section 5. Splitting becomes less easy if the string is not perfectly doubled, as one must

expect in a more realistic treatment.

We should keep in mind that falling strings as we have considered them in this paper

may be considerably idealized in comparison with strings that form as a result of energetic

collisions. The latter are probably less orderly, and they may be less optimized to travel

long distances before disappearing into the horizon. This might push our estimates of q̂

upward. On the other hand, we have not accounted for fluctuations, nor have we calculated

〈Tmn〉. Either of these elaborations might be phenomenologically significant, and the latter

might be affected by the string splitting interactions discussed above.
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